
CROSSTALK The Journal of Defense Software Engineering 3April 1999

Defect tracking is sometimes written off as boring,
 repetitive, and unglamorous. Even effective defect
tracking is often viewed as an unnecessary cost that

impedes schedules. Yet, defect tracking is one of the most criti-
cal components of the software development and the quality
assurance efforts.

When implemented well, defect tracking greatly reduces
overall project costs and improves schedule performance. As a
critical component in improving software quality, the potential
paybacks for such processes are enormous. A Hewlett-Packard
quality program reduced software errors by 75 percent and cut
development time 20 percent. An Air Force systems group
reports that every dollar invested to improve quality has a
conservative return of $7.50.

To effectively track and manage software defects also im-
proves customer satisfaction, creates higher productivity and
quicker delivery, and leads to better operational reliability and
improved morale. On the other hand, a mismanaged software
defect tracking program may indeed be an unnecessary cost.

Software defects take different names in different organiza-
tions, e.g., errors, issues, bugs, defects, or incidents. Whatever
they are called and whatever form they take, defects can have
an astounding impact on the development phase and can con-
tinue to haunt the product through its maintenance phase.

The costs to fix software defects are high, especially if
fixing requires developers to re-familiarize themselves with
months-old work or if someone other than the original devel-
oper is doing the fixing. Costs also increase exponentially
while moving further along the software development life-
cycle. Studies at IBM demonstrate that compared to catching
defects before or during coding, it is 10 times more costly to
correct an error after coding and 100 times more costly to
correct a production error.

Software Quality Costs
A 1996 study by The Standish Group reported that U.S. busi-
nesses invest about $250 billion in software development
annually, yet a great many of these projects fail because of
cost overruns. One of the significant components of project
costs is software quality cost. One estimate put the cost of a

single post-release defect to a large organization as high as
$20,000 to $40,000.

Software quality costs are the costs associated with prevent-
ing, finding, and correcting defective software. Following are
three useful definitions of quality costs [1].

Prevention Costs. These are costs of activities specifically
designed to prevent poor-quality software, e.g., costs of efforts
to prevent coding errors, design errors, additional document
reviews to reduce mistakes in the user manuals, and code re-
views to minimize badly documented or unmaintainably com-
plex code. Most of these prevention costs do not fit within a
typical testing group’s budget. The programming, design, and
marketing staffs spend this money.

Appraisal Costs. These are costs of activities to find de-
fects, such as code inspections and software quality testing.
Design reviews are part prevention and part appraisal. For-
mulating ways to strengthen the design is a prevention cost,
whereas to analyze proposed designs for potential errors is an
appraisal cost.

Failure Costs. These are costs that result directly from poor
software quality, such as the cost to fix defects and the cost to
deal with customer complaints. Failure costs can be divided
into two main areas:
• Internal failure costs: Costs that arise before the product is

delivered to the customer. Along with costs to find and fix
bugs are costs associated with wasted time, missed mile-
stones, and overtime needed to get back on schedule.

• External failure costs: Once the software is delivered to the
customer, poor-quality software can incur customer service
costs or the cost to distribute a patch for a released product.
External failure costs are huge; it is much cheaper to fix
defects before shipping the defective product to customers.
If a product has to be shipped late because of bugs, the
direct cost of late shipment includes the lost sales, whereas
the lost opportunity cost of the late shipment includes the
costs of delaying other projects while everyone finishes the
one that is error-ridden.
User interface defects are often treated as low priority and

are fixed last. This can be a mistake. Product screens may be
required for effective marketing and documentation. This can

Effective Software Defect Tracking
Reducing Project Costs and Enhancing Quality

Bala Subramaniam
ISSRe Systems, Inc.

The costs of defective software can be as high as 50 percent of the investment in software develop-
ment. Yet, the potential to improve software quality and reduce project cost is enormous. Software
defect tracking can be an effective means to achieve quality at less cost. However, defect tracking is
commonly misunderstood, incorrectly implemented, and often seen as an impediment and cost to
the organization. This article discusses the quality costs of defective software and provides a working
model to implement an effective software defect tracking system within an organization.

Software Quality Assurance

4 CROSSTALK The Journal of Defense Software Engineering April 1999

result in increased costs in nondevelop-
ment areas, lost marketing opportuni-
ties, and contractual penalties. Unfortu-
nately, numerical estimates of lost
opportunity costs and delays are difficult
to make and can be controversial [2].

All the above software quality costs
contribute to the total cost of poor-
quality software to the organization. In
aggregation, the total cost of software
quality may be presented as follows:

Total Cost of Quality = Prevention +
Appraisal + Internal Failure + External
Failure.

What Is a Defect?
Defects are commonly defined as “failure
to conform to specifications,” e.g., incor-
rectly implemented specifications and
specified requirement(s) missing from
the software. However, this definition is
too narrow. Discussions within the soft-
ware development community consis-
tently recognize that most failures in
software products are due to errors in the
specifications or requirements—as high
as 80 percent of total defect costs [3].
Other studies have shown that the ma-
jority of system errors occur in the de-
sign phase [4]. Figure 1 represents the
results of numerous studies that show
approximately two-thirds of all detected
errors can be traced to the design phase.

I recommend a broader definition of
defect: variance from a desired attribute.
These attributes include complete and
correct requirements and specifications,
designs that meet requirements, and
programs that observe requirements and
business rules.

Implementing an Effective
Defect Tracking Process
Software quality assurance depart-
ments can play a catalytic role in

implementing an effective defect track-
ing process. A survey conducted in
1994 by the Quality Assurance Insti-
tute found that a mere 38 percent of
the organizations had formal software
defect management processes, whereas
25 percent of the survey participants
said their organizations lack consistent
testing standards and procedures [5].
The survey also reported that although
60 percent of organizations had testing
standards and procedures, some orga-
nizations admitted they were out of
date and not followed. Recent surveys,
nonetheless, suggest that more compa-
nies are now striving to improve their
software development process through
early defect identification, minimizing
resolution time, hence reducing
project costs.

Effective defect tracking begins with
a systematic process. A structured track-
ing process begins with initially logging
the defects, investigating the defects,
then providing the structure to resolve
them. Defect analysis and reporting
offer a powerful means to manage de-
fects and defect depletion trends, hence
quality costs.

Integrate Software
Development and Defect
Tracking
Traditional approaches place testing
immediately before implementation.
Typically, testers receive a low-quality
product at the tail end of development
when there is tremendous pressure to
deliver, even if the software is plagued
with defects. For early defect detection
and resolution to take place, defect
tracking and software development
efforts should begin simultaneously. It
will solve a multitude of problems
downstream.

Defect tracking must be imple-
mented throughout the development
lifecycle. On projects I have managed
or worked on, this has always lead to
fewer release defects; however, such
organizational foresight is rare. The
Sentry Group reported that 62 percent
of all U.S. organizations do not have a
formal quality assurance or test group.
The report also added that a large ma-
jority of these organizations place a

much higher priority on meeting sched-
ule deadlines than producing high-
quality software [6].

The Different Phases of Defect
Tracking
Successful verification throughout the
development cycle requires clearly de-
fined system specification and software
application business rules.

Requirements phase. Defect tracking
focuses on validating that the defined
requirements meet the needs and the
users’ expectation about functionality.
Sometimes, system-specific constraints
would cause the deletion of certain busi-
ness requirements.

Design and analysis phase. Efforts
should focus on identifying and docu-
menting that the application design
meets the business rules or field require-
ments as defined by the business or user
requirements. For example, does the
design correctly represent the expected
user interface? Will it enforce the de-
fined business rules? Would a simpler
design reduce coding time and docu-
mentation of user manuals and training?
Does the design have other effects on the
reliability of the program?

I experienced the downstream cost
of a specification error when working
on one of two groups of developers who
were programming complementary
parts of a data-bridging program. Cod-
ing was well under way when incom-
plete system specifications caused trans-
fer of data on the bridge to fail. The
failure was not due to coding errors but
to specification errors that were trans-
lated into program codes. Had the
deficiency been discovered before cod-
ing began, we could have saved the
substantial time and money required to
repair the programs.

Programming phases. Defect track-
ing must emphasize ensuring that the
programs accomplish the defined appli-
cation functionality given by the re-
quirements and design. For example,
has any particular coding caused defects
in other parts of the application or in
the database? Is a particular feature
visibly wrong?

Maintenance and enhancement
phases. During the maintenance phase,

Figure 1. Origin of software errors across industry.

Coding Phase
36 Percent

Design and
Analysis Phase
64 Percent

Software Quality Assurance

CROSSTALK The Journal of Defense Software Engineering 5April 1999

effort is spent tracking ongoing user
issues with the software. During en-
hancement phases (there could be mul-
tiple releases), defect tracking is focused
on establishing that the previous release
is still stable when the enhancements
have been added. Figure 2 represents
the philosophy of defect tracking
throughout the software development
process.

Introduce Defect Tracking Early
It is not difficult to introduce tracking
early into the development process—it
fits well into current software develop-
ment processes. Today’s rapid applica-
tion development (RAD), the domi-
nant approach in client-server software
projects, focuses on shortened develop-
ment schedules. This software develop-
ment method provides early review
points, delivered as “builds” or itera-
tions of development, to ensure that
requirements are met. Such a process
clearly lends itself to early defect track-
ing, which can shadow development
(see Figure 2). Each build can receive
verification that it meets the defined
requirements; if not, defects can be
reported and resolved quickly and rela-
tively inexpensively while the software
is still “pliable.” The same defect re-
ported later in the development process
may require a major “surgery” to the
software product; hence, it will be more
costly. Front-end defect tracking costs
much less than waiting until the end.

“Quality comes not from inspec-
tion, but improvement of the
development process.”

– W. Edward Deming. [7]

An Effective Defect Tracking
Process
To merely integrate defect tracking into
the development process is not enough.
A clearly defined defect tracking process
is needed to ensure defects are handled
in an organized manner from discovery
through resolution. Components of this
process are described in the sections that
follow. This process is progressive—
defect evaluation cannot be successfully
performed if the earlier components
(such as describing defects and prioritiz-
ing defects) were not implemented.

Defect Repository
Once a defect has been discovered, the
important first step is to log the defect
into a defect-tracking database or reposi-
tory. When a defect is logged, it must be
fully described so that it can be repro-
duced during debugging, prioritized
based on its severity, and have resources
assigned for its resolution. Defects have a
number of other attributes that should
be recorded, such as
• Defect number.
• Date.
• The build and test platform in which

it was discovered.
• The application requirement or

business rule to which it relates.
• Any supplementary notes.

It also is important that the reposi-
tory offer a means to track the “life” of
the defect (the resolution status) and
historically report on all defects discov-
ered and logged for the project. It pays
to have this system online and available
to all development staff so that the as-
signed parties can update the resolution
progress for the defect status.

Defects Described
Your organization’s defect reporting
procedures should require that details
about each software defect be recorded
when the defect is discovered, including
a description, symptoms, sequence of
steps to re-create it, and severity. Defects
are of various types:
• Interface defects include incorrectly

working menu items, push buttons,
and list boxes.

• Navigational defects could be de-
scribed as a window not opening
when moving from one interface
screen to another.

• Functionality defects could be incor-
rect calculation of salaries in a payroll
system.
Do not merely log, “Adding new

customer window does not work.” A
detailed description, such as, “The ‘Save’
button on ‘Add New Customer’ window
does not work,” would give the devel-
oper adequate information to go straight
to the specific problem and repair it.
This saves time and unnecessary inter-
ruption for the developer to research the
defect thus reducing the overall project
cost.

Defects Prioritized
Once a defect is logged and described,
appropriate resources must be allocated
for its resolution. To do this, the defect
must be analyzed and prioritized accord-
ing to its severity. Each defect is given a
priority based on its criticality. Usually, it
is practical to have four priority levels:
• Resolve Immediately.
• High Priority.
• Normal Queue.
• Low Priority.

A misstatement of a requirement or a
serious design flaw must be resolved
immediately, before the developer trans-
lates it into codes that are implemented
in the software—it is much cheaper to
amend a requirement document than to
make program code changes. The wrong
font size for a label may be classified as
“Low Priority.”

The critical path for development is
another determinant of defect priority.
For example, if one piece of the func-
tionality must work before the next piece
is added, any functional defects of the

Figure 2. Defect tracking running parallel to development lifecycle.

Effective Software Defect Tracking: Reducing Project Costs and Enhancing Quality

6 CROSSTALK The Journal of Defense Software Engineering April 1999

first piece will be given the “Resolve
Immediately” priority level. On one
project I worked on, a query engine
retrieved transactions matching user-
specified criteria upon which further
processing was performed. If the query
engine had been defective, no further
development (or testing) would have
been practical. Therefore, all functional
defects of the query engine were priori-
tized as “Resolved Immediately.”

 The urgency with which a defect has
to be repaired is derived from the sever-
ity of the defect, which could be defined
as follows:
• Critical.
• Important.
• Average.
• Low.

A defect that prevents the user from
moving ahead in the application—a
“show stopper”—is classified as “Criti-
cal,” e.g., performing an event causes a
general protection fault in the applica-
tion. Performance defects may also be
classified as “Critical” for certain soft-
ware that must meet predetermined
performance metrics. If the user is able
to formulate work-arounds where there
are defects, these defects may be classi-
fied as “Average.” An overly long pro-
cessing time may be classified as “Impor-
tant” because although it does not
prevent the user from proceeding, it is
performance deficiency. Defects with
severity “Average” will be repaired when
the higher-category defects have been
repaired and if time permits. Certain
graphical user interface defects, such as
placement of push buttons on the win-
dow, may be classified as “Low,” since
this does not impede the application
functionality. Although defect priority
indicates how quickly the defect must be
repaired, its severity is determined by the
importance of that aspect of the applica-
tion in relation to the software require-
ments.

Structured Resolution
The defect tracking system also must
ensure that the defect progresses in an
appropriate sequence from discovery
through resolution. Each defect is also
given appropriate status; for example, a
new defect is given the status of “Open,”

and a defect under repair would have the
status of “Assigned.”

As repair work progresses, the status
of defects is updated to reflect its state in
the resolution process. A defect that has
been repaired will be submitted to the
testing team through formal change
control to be verified again. Only if the
fix passes the regression test will it be
accepted and the defect assigned a status
of “Closed.” Other defect statuses could
include “Deferred,” if the defect is not to
be fixed for the current release but may
be resolved in a subsequent release or
“Enhancement,” if a feature that is not
part of the requirements has been sug-
gested, and may be reviewed as an en-
hancement for later releases.

Communication
An effective defect tracking system must
allow communication of the software’s
defects, status, or changes to members of
the development team and all others
concerned. This has become an increas-
ingly crucial element because people
working on the same project may not
only work in different parts of a building
but also may even work in a different
state for a different organization. With-
out an effective means to communicate
defects, defect tracking—and conse-
quently achieving software quality—
would be a nightmare.

E-mail is an efficient vehicle to expe-
dite informing software engineers and all
concerned of defects as they are discov-
ered. Software engineers could then
perhaps access an online defect reposi-
tory as they receive the E-mail on new
and existing defects. Similarly, E-mail
also serves as a reply medium to inform
testers that a defect has been repaired.
Some defect tracking repositories, e.g.,
one set up in Lotus Notes, facilitates
built-in communication features that
can be used by both software engineers
and testers.

Commercially available defect track-
ing software, e.g., AutoTester and SQA
Team Test Software, are more sophisti-
cated in communicating defects and
their status to individuals or as a batch.
They also automatically inform respec-
tive development staff and management
of defects as they are discovered.

Although E-mail provides a means to
convey information about defects be-
tween the development and testing
team, regular formal defect tracking
meetings also help keep a close eye on
the number, types, and nature of defects
found, which may indicate how software
quality is progressing through the resolu-
tion stage.

Defect analysis is discussed in more
detail in the “Reporting” component of
this defect tracking process. If the testing
and development teams must work
hand-in-hand toward achieving software
quality, there must be continuous com-
munication between them. Informal or
verbal communication between these
teams is inadequate.

Continuous Defect Resolution
It costs much less to resolve defects as
soon as they are discovered—do not
merely accumulate a list of defects to fix
later. For example, in my current project,
the software product is undergoing two
transformations: The entire application
architecture is being revamped and en-
hancements are being implemented for
the next release. Revamping the architec-
ture changes the fundamental “back-
bone” of the application in question,
which is in itself a complex task. We
have three categories of defects:
• The existing list of yet-to-be-resolved

defects from the original application.
• Defects that would come about as a

result of revamping the architecture.
• New defects contributed by the new

enhancements.
We have divided the project into

smaller deliverables and implemented
defect tracking for each deliverable. If
resolution were to be delayed until later,
the mere complexity of the various deliv-
erables would present an inordinate
amount of challenge to resolve defects.
Moreover, different software engineers
are working on different deliverables and
different tasks within each deliverable.
At later stages, it would become a mam-
moth effort to merely identify and assign
defects to the respective software engi-
neers. Additionally, when they have been
assigned defects to repair, the engineers
have to remember what they imple-
mented in the codes perhaps months

Software Quality Assurance

CROSSTALK The Journal of Defense Software Engineering 7April 1999

earlier. This will incur expensive investi-
gation time.

The best time to resolve defects is
when they are discovered. This is espe-
cially true in a RAD environment, where
the application is developed through
several iterations or builds. Each build
has an incremental amount of applica-
tion functionality and related coding.
Any defects discovered in a particular
build should be referred to developers
immediately for resolution. The func-
tionality added in the most recent build
and related program codes are still fresh
in the developers’ minds, which leads to
faster investigation of the root cause of
the defects, and therefore more efficient
resolution efforts. To defer defect resolu-
tion until later in the development cycle
wastes time and resources.

Defect Evaluation and Analyses
Most organizations consider it essential
to constantly monitor and evaluate their
performance, and this key practice is
especially critical in defect removal. The
overall success of your project largely
hinges on effective defect resolution, so
you need to know your defect removal
status and the cost of achieving quality.
For example, a defect trend analysis will
indicate the number of defects discov-
ered over time. This analysis may even
be further subdivided for defects by
status, functionality, severity, etc. Defect
age analysis suggests how quickly defects
are resolved by category.

The type and extent of the defect
evaluation and analyses may be deter-
mined by the organization’s cost objec-
tives and delivery schedules. Following
are a few suggested analyses that may be
applicable to most software projects. The
following measures need to be deter-

mined to analyze defects (or those cho-
sen as part of an organization’s defect
analysis strategy).
• Defect status vs. priority.
• Defect status vs. severity.
• Defect status vs. application module.
• Defect age.

The above information will not be
available if the earlier steps of adequately
logging defects were not implemented as
part of the defect tracking process. By
comparing these measures from the
current iteration to the results from the
analysis of previous iterations, one can
get an indication of defects trends,
which are discussed further in the fol-
lowing two subsections.

Defect Evaluation. Although the
evaluation of test coverage provides the
measure of testing completion, an evalu-
ation of defects discovered during testing
provides the best indication of software
quality. By definition, quality is the
indication of how well the software
meets a desired attribute. So, in this
context, defects are identified as “vari-
ance from a desired attribute.”

Defect evaluation may be based on
methods that range from simple defect
counts to rigorous statistical modeling.
Rigorous evaluation can include forming
a model (or setting goals) about discov-
ery rates of defects, then fitting the ac-
tual defect rates during the testing pro-
cess to the model. The results can be
used to estimate the current software
reliability and predict how the reliability
will grow if testing and defect removal
efforts continue. However, because the
field’s current lack of a scientific model
and resources dedicated to perform such
evaluations (or a tool to support them),
an organization should carefully balance

the cost of rigorous evaluation with the
value it adds.

Defect Analysis. This means analyz-
ing the distribution of defects over the
values of one or more parameters associ-
ated with a defect. Defect analysis pro-
vides an indication of the reliability of
the software. Four main defect param-
eters are commonly used for defect
analysis:
• Status: the current state of the defect

(open, being repaired, closed, etc.).
• Priority: the relative importance of

addressing and resolving this defect.
• Severity: the relative impact of this

defect to the end-user, an organiza-
tion, third parties, etc.

• Source: what part of the software
(such as a module) or requirement
this defect affects.
Defect counts can be reported in two

ways: (1) as a function of time, resulting
in a defect trend diagram or report and
(2) as a function of one or more defect
parameters (like severity or status) in a
defect density report. These types of
analysis provide a perspective on the
trends or distribution of defects that
reveal the software’s reliability.

Defect trends follow a fairly predict-
able pattern in a testing cycle. Early in
the cycle, the defect rates rise quickly.
Then, they reach a peak about mid-
stream, in an adequately staffed test
project, and fall at a slower rate over
time. The project schedule can be re-
viewed in light of this trend. For in-
stance, if the defect rates are still rising in
the third week of a four-week test cycle,
the project is clearly not on schedule.
Other instances where the rate of closing
defects is too slow (experience rated)
might indicate a problem with the defect
resolution process; for example, re-
sources to fix defects or to retest and
validate fixes might be inadequate.

This is an important aspect of soft-
ware project management: to ensure that
software quality is progressing within the
planned delivery schedule. Figure 3
displays defect status by software mod-
ule. In each software module, a discov-
ered defect is given a status of Open and
assigned resources for fixing.

In Figure 3, resolution efforts for
accounting appear to be good, because

Figure 3. Resolution efforts for an accounting system.

0

20

40

60

80

100

Accounting Claims Diary Contracts

Discovered

Open

Repaired

Closed

Effective Software Defect Tracking: Reducing Project Costs and Enhancing Quality

8 CROSSTALK The Journal of Defense Software Engineering April 1999

there are more defects being repaired
than left open. Retesting efforts seem to
be adequate, because defects closed are
not far behind defects repaired. How-
ever, although there is a similar retesting
effort for the claims module, there are
far too many defects open, indicating
that additional resources may be re-
quired for this module. The trend for
the diary module suggests that both
defect repair and retesting efforts are
progressing well. The defect trend for
the contracts module also shows that
defect resolution is progressing well.

An organization could set quality
criteria for how the distribution of de-
fects over priority levels should look,
e.g., “No critical defects should stay
open for more than one week.” It would
be expected that defect discovery rates
would eventually diminish as testing and
fixing progresses. A threshold can be
established below that in which the
software can be deployed.

Defect counts can also be reported
based on the source, allowing detection
of weak modules and “hot spots.” Parts
of the software that must be fixed repeat-
edly indicate a fundamental design flaw.
In my current project, this type of analy-
sis helped us come to conclude that the
application architecture technology
needed to be revamped. The originally
chosen architecture, although technically
superior, was more complicated and
made the application extremely delicate
to changes or defects “fixes.”

Defects included in an analysis of
this kind have to be confirmed defects.
Not all reported defects turn out to be
flaws; some may be enhancement re-
quests, out of the scope of the project, or
describe a previously reported defect.
These defects must be reclassified as

trend reports can be cumulative or
noncumulative and help manage-
ment identify defect rates by status
thus providing an indication of how
well the software quality is progress-
ing through the project cycle. Figure
5 represents a typical defect trend
report.
In Figure 5, the number of new

defects peaked in February. Lagging
behind new defects by about a month,
the number of open defects was the
highest in March. The defect-fixing
efforts appear to be consistent through-
out the project, closing all defects by
June. Before an organization can pro-
duce the type of reports discussed here, a
defect repository must have been estab-
lished to support such analysis, i.e.,
provide for logging of defect description,
status, priorities, etc., outlined in the
“Defects Described” section of this ar-
ticle. To be successful, all pieces of the
defect tracking process must be em-
braced.

Making This Approach Work
It is unwise to try to achieve too much
too fast. Change is the most difficult
concept to grasp or implement. The
effective defect tracking model discussed
here not only may call for a fundamental
change in your software development
process but also may require a broader
concept and definition of defects and the
tools to manage them. Depending on
the capability of the development and
quality assurance process, an organiza-
tion may not want to attempt the total
defect-tracking model all at once. For
lower maturity organizations, an incre-

Figure 4. Defect distribution.

Figure 5. Defect trend report.

such. However, there is value in analyz-
ing why many duplicates or uncon-
firmed defects are being reported.

Defect Reporting
Defect evaluation and analysis have to be
reported in a useful form to those who
make decisions about resources, costs,
and delivery schedules. Although each
organization may want to produce dif-
ferent reports and different forms, there
are three classes of reports:
• Defect density or distribution re-

ports allow defect counts to be
shown as a function of one or two
defect parameters. Using the priority
parameter, defect distribution may be
represented as shown in Figure 4.

• Defect age reports are a type of de-
fect distribution report that shows
how long a defect has been in a par-
ticular state, such as Open. In any
age category, defects can also be
sorted by any other attribute, such as
Owner (developer assigned to repair
defect).

• Defect trend reports show defect
counts by status (New, Open, or
Closed) as a function of time. The

0

5

10

15

20

Jan Feb Mar Apr May Jun

New

Open

Closed

Test Periods

Defect

Count

Software Quality Assurance

0

50

100

Number of Defects

Defect Priority

Resolve Immediately

High Priority

Normal Queue

Low Priority

CROSSTALK The Journal of Defense Software Engineering 9April 1999

mental adoption of the recommenda-
tions would be more successful.

A good start is to set up a simple
defect-tracking repository that imple-
ments defect description, status, priority
and severity, and communication. Ex-
pand that list later to include defect
evaluation and analysis and reporting.
This ensures that the required defect
data is captured as a minimum so the
organization can build on this model.

Next, the process should be widened
to embrace the broader definition of a
defect, and the concept of implementing
defect tracking across the development
process. The implementation of an effec-
tive defect tracking process should be
taken through levels of maturity, which
is a topic for an entire article. Once the
model and process is applied to one
project successfully, it can be imple-
mented across the organization.

Conclusion
Effective defect tracking strongly contri-
butes to enhancing software quality and
reducing development project costs.
Using the broader definition of a defect
ensures that not only are resultant errors
or nonconformance to requirements
discovered but also variance from a de-
sired attribute, including incomplete
requirements, takes place. Searches for
such defects can then take place across
all software development phases.

By “shadowing” the software devel-
opment process, defect tracking helps
you identify and report potential soft-
ware problems early and acts as a catalyst
for problems to be addressed. By facili-
tating discovery of defects earlier in the
development cycle, effective defect track-
ing is a critical key to lower costs, en-
hanced software quality, and reducing
overall project cost. However, to achieve
this requires a fundamental change in
the ideology behind quality assurance
and the software development process as
well as the introduction of the necessary
tools to track and manage defects. The
defect-tracking model discussed in this
article will be useful for organizations
moving in this direction. Careful plan-
ning and phased adoption of this model
can make this approach a powerful soft-
ware quality strategy. u

About the Author
Bala Subramaniam is
director of quality
assurance at ISSRe
Systems, Inc., in New
York. He has 15 years
managerial and techni-
cal experience, during

which he has worked for medium and
large software companies including IBM.
His special interests include the definition
and implementation of quality assurance
methods and software process improve-
ment programs. He also is experienced in

designing effective automated test meth-
ods to test complex mission-critical soft-
ware functionality and business cycles. He
has a master’s degree in business adminis-
tration (finance) from Birmingham Busi-
ness School in Great Britain and is a certi-
fied software test engineer (Quality
Assurance Institute).

ISSRe Systems, Inc.
200 Business Park Drive
Armonk, NY 10504
Voice: 914-273-7777
Fax: 914-273-7796
E-mail: balas@issre.com

References
1. Campanella, J., ed., Principles of Quality

Costs, ASQC Quality Press, 1990.
2. Juran, J.M. and Frank M. Gryna, Juran’s

Quality Control Handbook, 4th ed.,
McGraw-Hill, New York, pp. 4.9-4.12.

3. ANSI/IEEE Standard 982.1-1988, IEEE
Standard Dictionary of Measures to Pro-
duce Reliable Software, Institute of Elec-
trical and Electronics Engineers, p. 13.

4. Perry, W., “Structured Approach to
Testing,” Effective Methods for Software
Testing, John Wiley & Sons, New York,
1995.

5. Perry, W., “1994 Survey Results on
Software Testing,” Effective Methods for
Software Testing, John Wiley & Sons,
New York, 1995.

6. Automated Software Quality Directions,
The Sentry Group, February 1998.

7. Deming, W. Edward, Out of the Crisis,
MIT Press, Cambridge, Mass., 1982.

INCOSE ’99 will be different – a new continent, a
fresh perspective, and coverage of emerging issues.

INCOSE ’99 will be the same – the world’s largest
gathering of systems engineering professionals with
thought-provoking, relevant papers; up-to-the-minute
briefings; and a wide range of tutorials.
To find out more about Brighton, visit http://
www.brighton.co.uk. For further details on the confer-
ence, refer to the INCOSE ’99 Web site.

INCOSE ’99
The Ninth Annual International Symposium of the

International Council on Systems Engineering

“Sharing the Future”
June 6 – 10, 1999
Brighton, England

“Brighton” your systems engineering in ’99!

Cass Jones
Conference Manager
7916 Convoy Court
San Diego, CA 92111
Voice: 619-565-9921
Fax: 619-565-9954
E-mail: pcminc@pcmisandiego.com
Internet: http://www.incose.org.uk

Effective Software Defect Tracking: Reducing Project Costs and Enhancing Quality

